32 resultados para Mitochondrial genome

em eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The silver gemfish Rexea solandri is an important economic resource but vulnerable to overfishing in Australian waters. The complete mitochondrial genome sequence is described from 1.6 million reads obtained via next generation sequencing. The total length of the mitogenome is 16,350 bp comprising 2 rRNA, 13 protein-coding genes, 22 tRNA and 2 non-coding regions. The mitogenome sequence was validated against sequences of PCR fragments and BLAST queries of Genbank. Gene order was equivalent to that found in marine fishes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two complete mitochondrial genomes of the black marlin Istiompax indica were assembled from approximately 3.5 and 2.5 million reads produced by Ion Torrent next generation sequencing. The complete genomes were 16,531 bp and 16,532 bp in length consisting of 2 rRNA, 13 protein-coding genes, 22tRNA and 2 coding regions. They demonstrated a similar A + T base (52.6%) to other teleosts. Intraspecific sequence variation was 99.5% for three I. indica mitogenomes and 99.7% for X. gladius. A lower value (85%) was found for the I. platypterus mitogenomes from genbank and accredited to inadvertent inclusion of gene regions from a con-familial species in one record, highlighting the need for cautious downstream use of genbank data. © 2014 Informa UK Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Using mitochondrial DNA for species identification and population studies assumes that the genome is maternally inherited, circular, located in the cytoplasm and lacks recombination. This study explores the mitochondrial genomes of three anomalous mackerel. Complete mitochondrial genome sequencing plus nuclear microsatellite genotyping of these fish identified them as Scomberomorus munroi (spotted mackerel). Unlike normal S. munroi, these three fish also contained different linear, mitochondrial genomes of Scomberomorus semifasciatus (grey mackerel). The results are best explained by hybridisation, paternal leakage and mitochondrial DNA linearization. This unusual observation may provide an explanation for mtDNA outliers in animal population studies. © 2013.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The East Indies triangle, bordered by the Phillipines, Malay Peninsula and New Guinea, has a high level of tropical marine species biodiversity. Pristipomoides multidens is a large, long-lived, fecund snapper species that is distributed throughout the East Indies and Indo-Pacific. Samples were analysed from central and eastern Indonesia and northern Australia to test for genetic discontinuities in population structure. Fish (n = 377) were collected from the Indonesian islands of Bali, Sumbawa, Flores, West Timor, Tanimbar and Tual along with 131 fish from two northern Australian locations (Arafura and Timor Seas) from a previous study. Genetic variation in the control region of the mitochondrial genome was assayed using restriction fragment length polymorphism and direct sequencing. Haplotype diversity was high (0.67-0.82), as was intraspecific sequence divergence (range 0-5.8%). FST between pairs of populations ranged from 0 to 0.2753. Genetic subdivision was apparent on a small spatial scale; FST was 0.16 over 191 km (Bali/Sumbawa) and 0.17 over 491 km (Bali/Flores). Constraints to dispersal that contribute to, and maintain, the observed degree of genetic subdivision are experienced presumably by all life history stages of this tropical marine finfish. The constraints may include (1) little or no movement of eggs or larvae, (2) little or no home range or migratory movement of adults and (3) loss of larval cohorts due to transport of larvae away from suitable habitat by prevailing currents

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The genetic population structure of red snapper Lutjanus malabaricus and Lutjanus erythropterus in eastern Indonesia and northern Australia was investigated by allozyme electrophoresis and sequence variation in the control region of mtDNA. Samples were collected from eight sites in Indonesia and four sites in northern Australia for both species. A total of 13 allozyme loci were scored. More variable loci were observed in L. malabaricus than in L. erythropterus. Sequence variation in the control region (left domain) of the mitochondrial genome was assessed by RFLP and direct sequencing. MtDNA haplotype diversity was high (L. erythropterus, 0.95 and L. malabaricus, 0.97), as was intraspecific sequence divergence, (L. erythropterus, 0.0-12.5% and L. malabaricus, 0.0-9.5%). The pattern of mtDNA haplotype frequencies grouped both species into two broad fisheries stocks with a genetic boundary either between Kupang and Sape (L. malabaricus) or between Kupang and Australian Timor Sea (L. erythropertus). The allozyme analyses revealed similar boundaries for L. erythropterus. Seven allozymes stocks compared to two mtDNA stocks of L. malabaricus including Ambon, which was not sampled with mtDNA, however, were reported. Possible reasons for differences in discrimination between the methods include: i) increased power of multiple allozyme loci over the single mtDNA locus, ii) insufficient gene sampling in the mtDNA control region and iii) relative evolutionary dynamics of nuclear (allozyme loci) and mitochondrial DNA in these taxa. Allozyme and haplotype data did not distinguish separate stocks among the four Australian locations nor the central Indonesian (Bali and Sape locations) for both L. malabaricus and L. erythropterus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fungal disease chytridiomycosis, caused by Batrachochytrium dendrobatidis, is enigmatic because it occurs globally in both declining and apparently healthy (non-declining) amphibian populations. This distribution has fueled debate concerning whether, in sites where it has recently been found, the pathogen was introduced or is endemic. In this study, we addressed the molecular population genetics of a global collection of fungal strains from both declining and healthy amphibian populations using DNA sequence variation from 17 nuclear loci and a large fragment from the mitochondrial genome. We found a low rate of DNA polymorphism, with only two sequence alleles detected at each locus, but a high diversity of diploid genotypes. Half of the loci displayed an excess of heterozygous genotypes, consistent with a primarily clonal mode of reproduction. Despite the absence of obvious sex, genotypic diversity was high (44 unique genotypes out of 59 strains). We provide evidence that the observed genotypic variation can be generated by loss of heterozygosity through mitotic recombination. One strain isolated from a bullfrog possessed as much allelic diversity as the entire global sample, suggesting the current epidemic can be traced back to the outbreak of a single clonal lineage. These data are consistent with the current chytridiomycosis epidemic resulting from a novel pathogen undergoing a rapid and recent range expansion. The widespread occurrence of the same lineage in both healthy and declining populations suggests that the outcome of the disease is contingent on environmental factors and host resistance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The common blacktip shark (Carcharhinus limbatus) and the Australian blacktip shark (C. tilstoni) are morphologically similar species that co-occur in subtropical and tropical Australia. In striking contrast to what has been previously reported, we demonstrate that the common blacktip shark is not rare in northern Australia but occurs in approximately equal frequencies with the Australian blacktip shark. Management of shark resources in northern Australia needs to take account of this new information. Species identification was performed using nucleotide sequences of the control, NADH dehydrogenase subunit 4 (ND4) and cytochrome oxidase I (COI) regions in the mitochondrial genome. The proportion of overall genetic variation (FST) between the two species was small (0.042, P < 0.01) based on allele frequencies at five microsatellite loci. We confirm that a third blacktip species (C. amblyrhynchoides, graceful shark) is closely related to C. tilstoni and C. limbatus and can be distinguished from them on the basis of mtDNA sequences from two gene regions. The Australian blacktip shark (C. tilstoni) was not encountered among 20 samples from central Indonesia that were later confirmed to be common blacktip and graceful sharks. Fisheries regulators urgently need new information on life history, population structure and morphological characters for species identification of blacktip shark species in Australia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coccidiosis is a costly worldwide enteric disease of chickens caused by parasites of the genus Eimeria. At present, there are seven described species that occur globally and a further three undescribed, operational taxonomic units (OTUs X, Y, and Z) that are known to infect chickens from Australia. Species of Eimeria have both overlapping morphology and pathology and frequently occur as mixed-species infections. This makes definitive diagnosis with currently available tests difficult and, to date, there is no test for the detection of the three OTUs. This paper describes the development of a PCR-based assay that is capable of detecting all ten species of Eimeria, including OTUs X, Y, and Z in field samples. The assay is based on a single set of generic primers that amplifies a single diagnostic fragment from the mitochondrial genome of each species. This one-tube assay is simple, low-cost, and has the capacity to be high throughput. It will therefore be of great benefit to the poultry industry for Eimeria detection and control, and the confirmation of identity and purity of vaccine strains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pharaoh cuttle Sepia pharaonis Ehrenberg, 1831 (Mollusca: Cephalopoda: Sepiida) is a broadly distributed species of substantial fisheries importance found from east Africa to southern Japan. Little is known about S. pharaonis phylogeography, but evidence from morphology and reproductive biology suggests that Sepia pharaonis is actually a complex of at least three species. To evaluate this possibility, we collected tissue samples from Sepia pharaonis from throughout its range. Phylogenetic analyses of partial mitochondrial 16S sequences from these samples reveal five distinct clades: a Gulf of Aden/Red Sea clade, a northern Australia clade, a Persian Gulf/Arabian Sea clade, a western Pacific clade (Gulf of Thailand and Taiwan) and an India/Andaman Sea clade. Phylogenetic analyses including several Sepia species show that S. pharaonis sensu lato may not be monophyletic. We suggest that "S. pharaonis" may consist of up to five species, but additional data will be required to fully clarify relationships within the S. pharaonis complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work was prompted by the need to be able to identify the invasive mussel species, Perna viridis, in tropical Australian seas using techniques that do not rely solely on morphology. DNA-based molecular methods utilizing a polymerase chain reaction (PCR) approach were developed to distinguish unambiguously between the three species in the genus Perna. Target regions were portions of two mitochondrial genes, cox1 and nad4, and the intergenic spacer between these that occurs in at least two Perna species. Based on interspecific sequence comparisons of the nad4 gene, a conserved primer has been designed that can act as a forward primer in PCRs for any Perna species. Four reverse primers have also been designed, based on nad4 and intergenic spacer sequences, which yield species-specific products of different lengths when paired with the conserved forward primer. A further pair of primers has been designed that will amplify part of the cox1 gene of any Perna species, and possibly other molluscs, as a positive control to demonstrate that the PCR is working.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the pedigree-based genome mapping project is to investigate and develop systems for implementing marker assisted selection to improve the efficiency of selection and increase the rate of genetic gain in breeding programs. Pedigree-based whole genome marker application provides a vehicle for incorporating marker technologies into applied breeding programs by bridging the gap between marker-trait association and marker implementation. We report on the development of protocols for implementation of pedigree-based whole genome marker analysis in breeding programs within the Australian northern winter cereals region. Examples of applications from the Queensland DPI&F wheat and barley breeding programs are provided, commenting on the use of microsatellites and other types of molecular markers for routine genomic analysis, the integration of genotypic, phenotypic and pedigree information for targeted wheat and barley lines, the genomic impacts of strong selection pressure in case study pedigrees, and directions for future pedigree-based marker development and analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We completed the genome sequence of Lettuce necrotic yellows virus (LNYV) by determining the nucleotide sequences of the 4a (putative phosphoprotein), 4b, M (matrix protein), G (glycoprotein) and L (polymerase) genes. The genome consists of 12,807 nucleotides and encodes six genes in the order 3′ leader-N-4a(P)-4b-M-G-L-5′ trailer. Sequences were derived from clones of a cDNA library from LNYV genomic RNA and from fragments amplified using reverse transcription-polymerase chain reaction. The 4a protein has a low isoelectric point characteristic for rhabdovirus phosphoproteins. The 4b protein has significant sequence similarities with the movement proteins of capillo- and trichoviruses and may be involved in cell-to-cell movement. The putative G protein sequence contains a predicted 25 amino acids signal peptide and endopeptidase cleavage site, three predicted glycosylation sites and a putative transmembrane domain. The deduced L protein sequence shows similarities with the L proteins of other plant rhabdoviruses and contains polymerase module motifs characteristic for RNA-dependent RNA polymerases of negative-strand RNA viruses. Phylogenetic analysis of this motif among rhabdoviruses placed LNYV in a group with other sequenced cytorhabdoviruses, most closely related to Strawberry crinkle virus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small juveniles of the nine species of scombrids in Australian waters are morphologically similar to one another and, consequently, difficult to identify to species level. We show that the sequence of the mitochondrial DNA cytochrome b gene region is a powerful tool for identification of these young fish. Using this method, we identified 50 juvenile scombrids collected from Exmouth Bay, Western Australia. Six species of scombrids were apparent in this sample of fish: narrow-barred Spanish mackerel (Scomberomorus commerson), Indian mackerel (Rastrelliger kanagurta), frigate tuna (Auxis thazard), bullet tuna (Auxis rochei), leaping bonito (Cybiosarda elegans), and kawakawa (Euthynnus affinis). The presence of Indian mackerel, frigate tuna, leaping bonito, and kawakawa is the first indication that coastal waters may be an important spawning habitat for these species, although offshore spawning may also occur. The occurrence of small juvenile S. commerson was predicted from the known spawning patterns of that species, but other mackerel species (Scomberomorus munroi, Scomberomorus queenslandicus, Scomberomorus semifasiciatus) likely to be spawning during the sampling period were not detected among the 50 small juveniles analyzed here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The river sharks (genus Glyphis) are a small group of poorly known sharks occurring in tropical rivers and estuarine waters across northern Australia, south-east Asia and the subcontinent. The taxonomy of the genus has long been unclear due to very few individuals having been caught and examined, resulting in a paucity of data regarding their distribution, biology and ecology. Only recently has attention focussed on the two Australian species, G. glyphis and G. garricki. This study is a result of a rare opportunity to collate the few samples that have been collected from these species and the bull shark Carcharhinus leucas, which shares an overlapping range. These samples were analysed using the DNA barcoding approach (cox1 mitochondrial gene), compared with six other species of carcharhinids and evaluated in light of the current taxonomic classification. Nine species-specific nucleotide differences were found between G. glyphis and G. garricki and no intra-specific variation provides strong support for the separation into distinct species. Significant differences were also observed at the inter-generic level, with Glyphis forming a distinct clade from Carcharhinus. This study provides the basis for future molecular studies required to better address conservation issues confronting G. glyphis and G. garricki in Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identifying species boundaries within morphologically indistinguishable cryptic species complexes is often contentious. For the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae), the lack of a clear understanding about the genetic limits of the numerous genetic groups and biotypes so far identified has resulted in a lack of consistency in the application of the terms, the approaches use to apply them and in our understanding of what genetic structure within B. tabaci means. Our response has been to use mitochondrial gene cytochrome oxidase one to consider how to clearly and consistently define genetic separation. Using Bayesian phylogenetic analysis and analysis of sequence pairwise divergence we found a considerably higher to number of genetic groups than had been previously determined with two breaks in the distribution, one at 11% and another at 3.5%. At >11% divergence, 11 distinct groups were resolved, whereas at >3.5% divergence 24 groups were identified. Consensus sequences for each of these groups were determined and were shown to be useful in the correct assignment of sequences of unknown origin. The 3.5% divergence bound is consistent with species level separations in other insect taxa and Suggests that B. tabaci is it cryptic species composed of at least 24 distinct species. We further show that the placement of Bemesia atriplex (Froggatt) within the B. tabaci in, group adds further weight to the argument for species level separation within B. tabaci. This new analysis, which constructs consensus sequences and uses these its a standard against which unknown sequences call be compared, provides for the first time it consistent means of identifying the genetic hounds of each species with it high degree of certainty.